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Figure eights on the square lattice: enumeration and 
Monte Carlo estimation 

S. G. WHITTINGTONt$ and J. P. VALLEAU$// 
t Lash Miller Chemical Laboratories, University of Toronto, Ontario, Canada 
5 Laboratoire de Physique ThCorique et Hautes Energies, FacultC des Sciences, 
Orsay, France7 
MS.  received 1st iMay 1969 

Abstract. This paper concerns the numbers of figure eights weakly embeddable 
in a lattice, important in the theories of self-avoiding walks and the Ising 
problem. Two Monte Carlo techniques for estimating such numbers are 
outlined and have been applied to the case of the square lattice. Enumerations 
have also been carried out for this lattice, and extrapolation formulae have been 
sought on the basis of these results. I t  appears that, as one goes to large graphs 
having a given number of edges, the numbers of figure eights will become 
comparable to those of self-avoiding polygons, and may be larger. Some 
rigorous, but rather weak, bounds are established for the numbers of such figure 
eights. 

1. Introduction 
In  this paper we investigate the number of figure eightst? of given size which are 
weakly embeddable in the two dimensional square lattice. A figure eight is a connected 
graph homeomorphic to the graph shown in figure 1, having one articulation point 

Figure 1. The  two self-aroiding circuits of a figure eight meet each other only at 
a single vertex. 

and a cyclomatic index of 2. We represent by (m, n)* the number of figure eights with 
m edges in one circuit and n in the other. Since each vertex is of even degree, the 
number of figure eights is of importance in the calculation of the partition function of 
the Ising model (Domb 1960, Green and Hurst 1965). In  addition, the number of 
self-avoiding walks on a lattice is related to the numbers of certain simpler classes of 
graphs, including figure eights, by Sykes’ ‘counting theorem’ (Sykes 1961). Although 
figure eights have been enumerated in connection with these problems, very few data 
have been published (Domb 1960) and no attempt appears to have been made to 
establish how the number of figure eights depends on the number of edges in the 
graph. 
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We have developed two Monte Carlo techniques for estimating the numbers of 
figure eights, and we report some results obtained in this way, together with some 
exact enumeration data. We derive some rigorous bounds on (m, n)8, and attempt to 
find formulae describing our results. In  particular, we discuss the relationship of the 
total number of figure eights of m edges to the number of polygons of m edges. 

2. Monte Carlo calculations 

The Monte Carlo method which we have used for most of this work depends on 
the fact that a figure eight can be considered as two self-avoiding polygons joined 
at a vertex in such a way that no other intersection between the two polygons occurs. 
We generate a random sample of polygons of n edges and, for each polygon in the 
sample, we count the number of ways in which each polygon of m edges can be added 
to each vertex to generate a figure eight. If the number of n-gons is known, this 
allows us to estimate the number of figure eights (m, n)8. The method is evidently 
most convenient when m is much less than n ;  we have used it only for n < 20 and 
m = 4 and 6. One could go to larger values of m, however, by considering samples 
from the population of m-gons, rather than counting all the possible ways of adding an 
m-gon. 

The random sample of polygons was generated by a Monte Carlo technique 
described previously (Whittington and Valleau 1969). The  idea is to sample along a 
realization of a suitable Markov chain defined on a set of polygons which are conse- 
quents of one another. Since each polygon is to have the same weight, this sampling 
nilarkov chain must have a uniform limit distribution and therefore a doubly stochastic 
transition probability matrix; in practice, the Markov chain was chosen to be sym- 
metric. It is important to notice that for the transition probabilities used (Whittington 
and Valleau 1969), the Markov chain defined on the whole population of polygons is 
reducible; it is thus necessary to know the number of polygons in each closed subset. 
I n  the case n = 20, Monte Carlo estimates (Whittington and Valleau 1969) of the 
proportions in the subsets were combined with Sykes’ enumeration (Sykes 1969, 
private communication) of the total number (20), of such polygons. For n = 18, 
we enumerated the polygons in each subsett; these numbers combine to give a total 
number of 18-step polygons agreeing with the result of Rushbrooke and Ere  (1959) 
and of Hiley and Sykes (1961). 

An alternative Monte Carlo approach, which we tried out in a few cases, involved 
applying to figure eights a capture-recapture estimation scheme, similar to that 
described previously for polygons (Whittington and Valleau 1969). A random sample 
of figure eights is generated, again by sampling along a realization of a suitable 
Markov chain with a uniform unique distribution, and the number of times that a 
figure eight recurs in the realization is noted. The data can then by analysed (using 
for example the method of DeLury (1958)) to estimate the total number of figure 
eights. This method is more convenient than the other when m 2: n, and also has the 
advantage that the total number of polygons of n edges need not be known. It has the 
disadvantage that, at least with the transition probabilities which we have used 
(Whittington and Valleau 1969), the number of closed subsets which must be sampled 
increases rapidly with the size of the figure eight. 

+t The separate subsets are characterized by the number of vertical steps in the polygon. 
Their numbers would be important in the study of lattices which were rectangular rather than 
square, so we report them here (n = 18). 

Vertical steps 2 4  6 8 
Number of polygons 1 85 1476 6072 
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3. Results 
The exact enumerations were done by hand, all enumerations being carried out at 

least twice by independent enumeration schemes ; the results are given in table 1. The  
results accompanied by an error bound were obtained by the first Monte Carlo 
method described above; the error given is one standard deviation. Estimates of 
(4, 16)a and (6, 16)* were obtained in both ways and (table 1) agree to better than 8%. 
Several results were checked by the capture-recapture method and in all cases agreed 
within the standard deviation ; we have not reported these results here. 

Table 1. Numbers, (m, n)g, of figure eights having m edges in one loop 
and n edges in the other and which are weakly embeddable in the square 
lattice. Standard deviations are given for the Monte Carle estimates; 

the rest have been enumerated 

\m 
n\ 
4 
6 
8 

10 
12 
14 
16 

18 
20 

4 

2 
8 

32 
144 
708 

3696 
20296 
20287 (20,;) 

1.158 x i05  (iy0) 
6.69 x 105 (1 7 6 )  

6 8 10 

8 
64 124 

288 1096 2388 
1408 5304 22888 
7248 27096 - 

39056 - - 
39172 (296,) 

2.188 x105 (1%) - - 
1.241 x106 (1%) - - 

4. Discussion 
A figure eight can be considered as two polygons joined at a vertex and satisfying 

certain non-intersection criteria. As an upper bound on the number of figure eights, 
we consider the number of graphs formed by joining two polygons at a vertex in the 
absence of these constraints. Each m-gon can then be joined to each n-gon at each 
vertex of each polygon, i.e. in mn ways. If we write (m),  for the number of m-gons, 
then evidently 

In  the appendix we prove a slightly stronger upper bound, and also give a lower 
bound, obtaining: 

These bounds are too weak to be of much practical importance, except in checking 
the asymptotic validity of extrapolation formulae. 

The  forms of these bounds suggest that one might look at extrapolation formulae 
of the type 

or 

(my %)a mn(m)p(n)p. 

2(m),(n), G (m ,  .>8 amn(m),(n),. 

(m ,  .>I, ( m n ) V 4 P ( 4 P  

(m ,  .)a O= (mn)r'pmtn 

where the second form comes from the first using the good polygon extrapolation 
formula (Fisher and Sykes 1959, Rushbrooke and Eve 1959, Hiley and Sykes 1961) 

(m) ,  cc m 4 - I ~ ~ .  

A comparison with the second form has been made in figure 2, using the accepted 
value of p, 2.6390 (Hiley and Sykes 1961); the values of (m, n)B for the cases m = n 
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have been multiplied by 2 when drawing figure 2, in order to compensate for the 
additional symmetry present. Except for the graphs (4, one finds a rough agree- 
ment with this form; the slope of the line drawn through the points is roughly 2.0, 

+ 

t 

3.0 

t 

2.51 I I I I 
I .2 1.4 1.6 I, 8 2.0 

lg ( m n )  

Figure 2. Graph of lg {pm + "/(m, n)8} against lg (mn) (except that the values of 
(m, n), have been doubled for the cases m = n to allow for the extra symmetry) : 
+ m = 4, n = 4,6,  ... 20; O m  = 6, n = 6 , 8  ,... 20; A m  = 8, n = 8, 10,12, 

14; m = 10, n = 10,12. 

which would correspond to 
(m,  (mn>1'2(m)P(n),* 

The agreement with this form is not entirely satisfactory, however. A closer look 
have in fact slightly different 

seem to be slowly 
at the data suggests that the lines (6, 
slopes, increasing in that order, while the slopes of (4, n)a and (6, 
decreasing as n increases. 

(8, n)a and (10, 

Table 2. The total numbers of polgons, (m),,, and of figure eights, ( W Z ) ~ ,  
having m edges which are weakly embeddable in the square lattice; rm 

is the ratio (m)p/(m)s 

m 
8 

10 
12 
14 
16 
18 
20 
22 

(4 P 
7 

28 
124 
5 88 

2938 
15268 
81826 

449572 

(m) 8 

2 
8 

40 
208 

1120 
6200 

35236 
2.048 x lo5  (0.6%) 

r m  
3.5000 
3.5000 
3.1000 
2.8269 
2.6232 
2.4626 
2.3222 
2.195 (0.6%) 

If we define the total number of figure eights ( M ) ~ ,  then the ratios Y, = (m)p/(m)8 
appear (table 2) to obey fairly well the simple relationship 

Y,, = cc+p/m; 
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a graph is shown in figure 3.  A least-squares analysis based on the exact data of 
m = 10(2)20yields 

U = 1.158 f 0.010 
/j = 23.39 & 0.13 

the standard error of the estimate is small: 0.0056. However, 
downward trend from this straight line?, emphasized when 

I 3.6 

L 

for large m there is a 
the m = 22 result is 

/+’ 

0.05 0.06 0.07 0.08 0.0 9 0. IO 
I l m  

Figure 3. Graph of y m  = (m)D/(m)8 as a function of ljm. The line is that obtained 
from the least-squares analysis mentioned in the text, using m = 10(2)20. The 
error bar for m = 22 corresponds to the 95% confidence limit (two standard 

deviations) of the Monte Carlo estimate for (4, 18)8. 

included (figure 3). This can be taken into account by adding a third parameter and 
fitting the data to 

r,, = a + b / d m + c / m  

when a least-squares analysis gives a = 0.818, b = 2.45, c = 19.00. The  data 
therefore suggest that for large m the ratio Y, tends to a constant1 in the region of 
unity, so that the numbers of polygons and of figure eights are similar. This means that 
they must make similar contributions to the higher terms in the series expansions of 
the Ising partition function : the polygon numbers no longer dominate the behaviour, 
as they do for the lower terms. 

t Since submitting this paper we have learned that M. F. Sykes has enumerated many 
figure eights, including nearly all those reported here. Our enumeration results are identical 
to his, and our Monte Carlo estimates are within a standard deviation. Use of his results 
would allow a point form = 24 to be added to the Y,,, curve: this point confirms the ‘downward’ 
trend indicated by our data. We wish to thank Dr. Sykes for permission to mention his results. 

The present data do not allow one to exclude the possibility that Y,,, may eventually approach 
zero, as suggested by a referee. In  that case the figure eight contributions would eventually 
swamp those of the polygons in the higher terms of the Ising partition functions. 
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Appendix 
In  order to establish an upper limit on the number of figure eights (m,  n),! con- 

sider joining two polygons A and N of m and n steps, A vertex like 1, pointing 
north-east, on A, can only join o n N ,  a vertex L, pointing south-west. Let us 
relabel these directions 

and call Ml the number of vertices on A pointing in direction 1, etc. The number of 
ways of joining J% a n d N ,  J ,  is governed by 

J < M1NS + M J V 4  + MS.N1+ M4NZ = 2(M,N1 + 1WJV2) (AI) 
where the second form follows from the fact that illl = ,U,, M ,  = M4 and similarly 
for N I ,  N 3  and N,, N4. Now necessarily 

4 4 

2 Mi < m, C N i < n  
1 1 

so that 

If we define p, v by 
LUl+iW2 < +m, N1 +AT2 < 4n. (A21 

(A431 M1-Mz = ip, Nl-N - 1  
2 - 2v 

then it follows from (1) and (2) that: 
J < $mn+&pv. 

T o  consider (m, n)8 we have eventually to average over all the A and A‘“, however, 
and in this average the final term of (4) will disappear. This is because for any pair 
A, JV we shall also encounter a pair AM’, for example, in which JV’ is simp1y.N 
rotated through ~ / 2 ,  so that Nl’ = N,, N,’ = Nl. This has the effect of reversing the 
sign of v (3), Y‘ = -v, so that the result corresponding to (4) becomes J < amn- &pv, 
Averaging over all the polygons, therefore, the pv terms disappear, and one obtains 

( J )  < kmn 

which gives the upper limit on (m, n), quoted in the paper. 
T o  establish a lower limit on (m, n), we define an ‘upper right-hand corner’ of 

any polygon A: this vertex is in the top-most row of vertices of the polygon, and it is 
the most rightward of the vertices in that row. Evidently it exists, and so does a lower 
left-hand corner on M ,  and they can certainly be joined to form a permissible figure 
eight. The  argument can be repeated for an upper left-hand corner on 4 and a 
lower right-hand corner on M ,  so that 

J a 2  
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leading to the lower bound on (m, n)8 quoted in the paper. One might expect to push 
this argument a little further, but in the case m = n, one then runs the risk of counting 
the same figure eight twice (as one can see for the case (4, 4)8, for which the result is 
in fact (4, 4)8 = 2(4)p(4)p). Where m # n one can at least consider the other two 
'corners', however, and obtain 
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